Introduction to Graphs

Tecniche di Programmazione - A.A. 2022/2023

Definition: Graph

Introduction to Graphs

Definition: Graph

- A graph is a collection of points and lines connecting some (possibly empty) subset of them.
- The points of a graph are most commonly known as graph vertices, but may also be called "nodes" or simply "points."
- The lines connecting the vertices of a graph are most commonly known as graph edges, but may also be called "arcs" or "lines."

http://mathworld.wolfram.com/

Big warning: Graph \neq Graph \neq Graph

Graph (plot) (italiano: grafico)

Graph (maths)
(italiano: grafo)

$\%$

Graph (chart)
(italiano: grafico)

History

- The study of graphs is known as graph theory, and was first systematically investigated by D. König in the 1930s
- Euler's proof about the walk across all seven bridges of Königsberg (I736), now known as the Königsberg bridge problem, is a famous precursor to graph theory.
- In fact, the study of various sorts of paths in graphs has many applications in real-world problems.

Königsberg Bridge Problem

- Can the 7 bridges the of the city of Königsberg over the river Preger all be traversed in a single trip without doubling back, with the additional requirement that the trip ends in the same place it began?

Figure 98. Geographic Map: The Königsberg Bridges.

Today: Kaliningrad, Russia

Königsberg Bridge Problem

- Can the 7 bridges the of the city of Königsberg over the river Preger all be traversed in a single trip

Figure 98. Geographic Map: The Königsberg Bridges.

Today: Kaliningrad, Russia

Types of graphs: edge cardinality

- Simple graph:
- At most one edge (i.e., either one edge or no edges) may connect any two vertices
- Multigraph:

simple graph

multigraph between vertices
- Loops:
- Edge between a vertex and itself
- Pseudograph:
- Multigraph with loops

pseudograph

Types of graphs: edge direction

- Undirected
- Oriented
- Edges have one direction (indicated by arrow)
- Directed
- Edges may have one or two directions
- Network
- Oriented graph with weighted edges

directed graph

oriented graph

network

Types of graphs: labeling

- Labels
- None
- On Vertices
- On Edges
- Groups (=colors)
- OfVertices
- no edge connects two identically colored vertices
- Of Edges
> adjacent edges must receive different colors vertex-colored graph

cdge-labeled graph
- Of both
wiabeled graph

vertex- and edgecolored graph

Directed and Oriented graphs

- A Directed Graph (di-graph) G is a pair (V,E), where
- V is a (finite) set of vertices
- E is a (finite) set of edges, that identify a binary relationship over V
- $E \subseteq V \times V$

Example

Example

$$
V=\{1,2,3,4,5,6\}
$$

Example

$$
\begin{aligned}
& E=\{(1,2),(2,2),(2,5), \\
& (5,4),(4,5),(4,1), \\
& (2,4),(6,3)\}
\end{aligned}
$$

Undirected graph

- An Undirected Graph is still represented as a couple $G=(V, E)$, but the set E is made of non-ordered pairs of vertices

Example

$$
V=\{1,2,3,4,5,6\}
$$

$$
E=\{\{1,2\},\{2,5\},\{5,1\},\{6,3\}\}
$$

Example

$V=\{I, 2,3,4,5,6\}$

$E=\{\{1,2\},\{2,5\},\{5, I\},\{6,3\}\}$

Edge $(1,5)$ adjacent (or incident) to vertices I and 5

Related Definitions

Introduction to Graphs

Degree

- In an undirected graph,
b the degree of a vertex is the number of incident edges
- In a directed graph
> The in-degree is the number of incoming edges
> The out-degree is the number of departing edges
* The degree is the sum of in-degree and out-degree
- A vertex with degree 0 is isolated

Degree

Degree

Paths

- A path on a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ also called a trail, is a sequence $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ such that:
- v_{1}, \ldots, v_{n} are vertices: $v_{i} \in V$
- $\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right), \ldots,\left(v_{n-1}, v_{n}\right)$ are graph edges: $\left(v_{i-1}, v_{i}\right) \in E$
b v_{i} are distinct (for "simple" paths).
- The length of a path is the number of edges ($n-I$)
- If there exist a path between v_{A} and v_{B} we say that v_{B} is reachable from v_{A}

Example

Path $=(1,2,5)$
 Length = 2

Cycles

- A cycle is a path where $v_{1}=v_{n}$
- A graph with no cycles is said acyclic

Example

Path $=(\mathrm{I}, 2,5, \mathrm{I})$ Length $=3$

Reachability (Undirected)

- An undirected graph is connected if, for every couple of vertices, there is a path connecting them
- The connected sub-graphs of maximum size are called connected components
- A connected graph has exactly one connected component

Connected components

The graph is not connected. Connected components $=3$ $\{4\},\{1,2,5\},\{3,6\}$

Reachability (Directed)

- A directed graph is strongly connected if, for every ordered pair of vertices (v, v^{\prime}), there exists at least one path connecting v to v ’

Example

The graph is strongly connected

Example

The graph is not strongly connected

Complete graph

- A graph is complete if, for every pair of vertices, there is an edge connecting them (they are adjacent)
- Symbol: K_{n}

Complete graph: edges

- In a complete graph with n vertices, the number of edges is

	Directed	Undirected
No self loops	$n(n-1)$	$\frac{n(n-1)}{2}$
With self loops	n^{2}	$\frac{n(n+1)}{2}$

Density

- The density of a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is the ratio of the number of edges to the total number of possible edges

$$
d=\frac{|E(G)|}{\left|E\left(K_{|V(G)|}\right)\right|}
$$

Example

Density $=0.5$

Existing: 3 edges
Total: 6 possible edges

Trees and Forests

- An undirected acyclic graph is called forest
- An undirected acyclic connected graph is called tree

Example

Tree

Example

Example

This is not a tree nor a forest
,

Rooted trees

- In a tree, a special node may be singled out
- This node is called the "root" of the tree
- Any node of a tree can be the root

Tree (implicit) ordering

- The root node of a tree induces an ordering of the nodes
- The root is the "ancestor" of all other nodes/vertices
b "children" are "away from the root"
b "parents" are "towards the root"
- The root is the only node without parents
- All other nodes have exactly one parent
- The furthermost (children-of-children-of-children...) nodes are "leaves"

Example

Rooted Tree

Example

Rooted Tree

Weighted graphs

- A weighted graph is a graph in which each branch (edge) is given a numerical weight.
- A weighted graph is therefore a special type of labeled graph in which the labels are numbers (which are usually taken to be positive).

Licenza d'uso

- Queste diapositive sono distribuite con licenza Creative Commons "Attribuzione - Non commerciale - Condividi allo stesso modo (CC BY-NC-SA)"
- Sei libero:
- di riprodurre, distribuire, comunicare al pubblico, esporre in pubblico, rappresentare, eseguire e recitare quest'opera
, di modificare quest'opera
- Alle seguenti condizioni:
- Attribuzione - Devi attribuire la paternità dell'opera agli autori originali e in modo tale da non suggerire che essi avallino te o il modo cui tu usi l'opera.
- Non commerciale - Non puoi usare quest'opera per fini commerciali.
- Condividi allo stesso modo - Se alteri o trasformi quest'opera, o se la usi per crearne un'altra, puoi distribuire l'opera risultante solo con ur licenza identica o equivalente a questa.
- http://creativecommons.org/licenses/by-nc-sa/3.0/

